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Abstract. A kemel-based algorithm for useful-anomaly detection and noise elim-
ination is introduced. The algorithm's objective is to improve data quality by cor-
recting wrong observations while leaving intact the correct ones. The proposed
algorithm is based on a process that we called "Re-Measurement" and it is ori-
ented to datasets that might contain both kinds of rare objects: noise and useful-
anomalies. Two versions ofthe algorithm are presented R-V1 and R-V2. Both
algorithms generate new observations of a suspect object in order to discriminate
between erroneous and correct observations. Noise is corrected while outliers are

retained. Suspect data is detected by a kernel-based novelty detection algorithm.
We presented experimental results of our algorithm, combined with KPCA, in the

prediction of stellar population parameters a challenging astronomical domain, as
well as in benchmark data.

1 Introduction

Real world data are never as perfect as we would like them to be and often can suf-

fer from corruption that may affect data interpretations, data processing, classifiers and
models generated from data as well as decisions made based on data. Affected data can

be due to several factors including: ignorance and human errors, the inherent variability

of the domain, rounding errors, transcription error, instrument malfunction, biases and,
most important, rare but correct and useful behavior. For these reasons it is necessary to

develop techniques that allow us to deal with affected data. As we can see corrupted data

may be: noise (erroneous data) or anomalies (rare but correct data) and it would be very

useful to differentiate between them from the rest of data. An expert can perform this

process but it requires a lot of time investment which yields in expensive human-hour
costs, from here arises the necessity of automate this task. However this is not an easy

task since outliers and noise may look quite similar for an algorithm, then we need to

add to such algorithm a more human-like reasoning. In this work the re-measurement

idea is proposed, this approach consist of detecting "suspect" data and by generating
new observations of these objects we can correct errors, while retaining anomalies for

posterior analysis. This algorithm could be useful in several research areas, including:

machine learning, data mining, pattern recognition, data cleansing, data warehousing,

information retrieval and applications such as: security systems and medical diagnostic.

In this work we oriented our efforts to improve data quality and prediction accuracy for

A. Gelbukh, S. Torres, I. López (Eds.)
Advances in Computer Science and Engineering
Research in Computing Science 19, 2006, pр. 69-80



70 Escalante J.

machine learning problems, specifically for the estimation of stellar population para-
meters a domain in which the re-measurement algorithm is suitable to test.

Elimination of suspect objects have been widely used for most of anomaly detec-

tion methods [1-6], the popularity of this approach comes from the fact that they can

alter calculated statistics, increase prediction error, turn more complex a model based

on these data or possibly they introduce a bias in the process to which they are dedi-

cated. However we should not eliminate an observation unless, like an expert, we can

determine the incorrectness of the datum. This often is not possible for several reasons:

human-hour cost, time investment, ignorance about the domain we are dealing and even

uncertainty. Nevertheless if we could guarantee that an algorithm successfully will dis-

tinguish errors from rare objects with high confidence level the difficult task would

be solved. Like an human does, an algorithm can confirm or discard a hypothesis by

analyzing several samples of the same object.

Re-measurement is safer than elimination by several reasons: we can conserve rare

objects and decide what to do about them, we can ensure that an anomaly is correct,

we can eliminate the wrong objects from our dataset, we can be sure that a com-

mon instance will never be affected, all of these reasons make suitable the use of re-

measurement instead of elimination in certain domains.

2 Estimation of Stellar Populations Parameters

In most ofthe scientific disciplines we are facing a massive data overload, astronomy is
not the exception. With the development of new automated telescopes for sky surveys,

terabytes of information are being generated. Recently machine learning researchers
and astronomers have been collaborating towards the goal of automatizing astronomical
analysis tasks. Almost all information about a star can be obtained from its spectrum,

which is a plot of flux against wavelength. An analysis on galactic spectrum can reveal
valuable information about star formation, as well as other physical parameters such as

metal content, mass and shape.

Theoretical studies have shown that a galactic spectrum can be modeled with good

accuracy as a linear combination of three spectra, corresponding to young, medium and

old stellar populations, each with different metallicity and together with a model of the

effects of interstellar dust in these individual spectra. Interstellar dust absorbs energy

preferentially at short wavelengths, near the blue end of the visible spectrum, while its
effects on longer wavelengths, near the red end of the spectrum, are small. This effect is

called reddening in the astronomical literature. Let f(X) be the energy flux emitted by

a star or group of stars at wavelength A. The flux detected by a measuring device is then

d(A) = f(A)(1 — e-rA), where r is a constant that defines the amount of reddening in

the observed spectrum and depends on the size and density of the dust particles in the

interstellar medium.

We also need to consider the redshift, which tells us how the light emitted by distant

galaxies is shifted to longer wavelengths, when compared to the spectrum of closer

galaxies. This is taken as evidence that the universe is expanding and that it started in

a Big Bang. More distant objects generally exhibit larger redshifts; these more distant
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Table 6. Performance of the R - V2 algorithm for the UCI datasets. We present: CLC, CLO and

CLN as before, outliers detected (O.D.), noise detected (N.D.), confusions(Conf.), false outliers
(F.O.) and false noise (F.N.)

DatasetW G HAIML C B Ab

CLN 3.33 3.66 3.58 3.67 4.29 4.15 2.92 3.82 4.21 3.88

O.D.(%) 100 100 96.15 100 100 100 100 100 100 100

N.D.(%) 100 100 98.67 100 100 100 100 100 96.67 98

F.O. 0 00 0 0 3 0 0 2 11

Table 7. Performance of the kernel-based novelty detection algorithm used. We present the num-

ber of suspect observations detected, true positives and false negatives, recall, precision and
F-measure

Dataset W G H A I M L C B Ab

Suspect 27 32 76 5 23 31 22 102 29 150

TP 18 21 49.66 3 15 21 15 68 18.66 99

FN 0 0 1.33 0 0 00 0 0.33

Rec 1 1 0.97 1 11 1 0.98 0.99

Prec 0.76 0.66 0.65 0.6 0.65 0.68 0.68 0.67 0.64 0.66

F 0.8 0.79 0.78 0.75 0.79 0.81 0.81 0.8 0.78 0.79

Table 8. Reduction percentage of M.A.E. for each dataset, when suspect data is eliminated(E)
and when we used the R - V2 algorithm, compared with the prediction of LWLR using the full

data. In last 3 rows, novelty detection algorithm performance is presented

Dataset

E

W

0.54

GH A I

15.76 15.77 24.61

R-V2 10.86 14.74 34.54 28.37

Red%

5.23

4

M L C B Ab

13.89 6.29 1.83 0.85 5.86

28.62 5.63 1.75 2.24 5.08
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when we used R - V2 even in some results our algorithm improved the elimination of
suspect data. The algorithm needed only a new sample to identify outliers and common
instances and nearby 4 to detect noise. There are not confusions and the false outliers

rate was low, although we had false outliers only in two datasets. Performance of the
kernel-based algorithm for novelty detection again is almost perfect.

6 Conclusions

We have introduced the re-measurement process as an option for useful-anomaly and
noise differentiation. Two kernel based algorithms were presented, R- V2 needs only a
new sample to identify anomalies and at most two for noisy objects. Anomalies remain
unaffected while noise is substituted in an almost automated process (an user may be
needed to generate the new measurements). Our algorithms are model data independent
and can be generalized for non real valued domains, since they are based on kernels.

Experimental results on an astrophysics domain as well as on benchmark data are
presented, our algorithm combined with KPCA improves prediction accuracy and data

quality for the astronomical domain, while for the UCI data the same pattern is observed

showing the generalization ability of our algorithm. This algorithm could be useful
in domains requiring of highly-reliable data or in those in which the novelty is more
interesting than the rest of the objects.
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