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Abstract. Akemel-based algorithm for useful-anomaly detection and noise elim-
ination is introduced. The algorithm’s objective is to improve data quality by cor-
recting wrong observations while leaving intact the correct ones. The proposed
algorithm is based on a process that we called "Re-Measurement" and it is ori-
ented to datasets that might contain both kinds of rare objects: noise and useful-
anomalies. Two versions of the algorithm are presented R—V'1 and R— V2. Both
algorithms generate new observations of a suspect object in order to discriminate
between erroneous and correct observations. Noise is corrected while outliers are
retained. Suspect data is detected by a kernel-based novelty detection algorithm.
We presented experimental results of our algorithm, combined with KPCA, in the

prediction of stellar population parameters a challenging astronomical domain, as
well as in benchmark data.

1 Introduction

Real world data are never as perfect as we would like them to be and often can suf-
fer from corruption that may affect data interpretations, data processing, classifiers and
models generated from data as well as decisions made based on data. Affected data can
be due to several factors including: ignorance and human errors, the inherent variability
of the domain, rounding errors, transcription error, instrument malfunction, biases and,
most important, rare but correct and useful behavior. For these reasons it is necessary to
develop techniques that allow us to deal with affected data. As we can see corrupted data
may be: noise (erroneous data) or anomalies (rare but correct data) and it would be very
useful to differentiate between them from the rest of data. An expert can perform this
process but it requires a lot of time investment which yields in expensive human-hour
costs, from here arises the necessity of automate this task. However this is not an easy
task since outliers and noise may look quite similar for an algorithm, then we need to
add to such algorithm a more human-like reasoning. In this work the re-measurement
idea is proposed, this approach consist of detecting "suspecr" data and by generating
new observations of these objects we can correct errors, while retaining anomalies for
posterior analysis. This algorithm could be useful in several research areas, includi.ng:
machine leamning, data mining, pattern recognition, data cleansing, datz} warghouang,
information retrieval and applications such as: security systems and medical diagnostic.
In this work we oriented our efforts to improve data quality and prediction accuracy for
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machine learning problems, specifically for the estimation of stellar population para-
meters a domain in which the re-measurement algorithm is suitable to test.

Elimination of suspect objects have been widely used for most of anomaly detec-
tion methods [1-6], the popularity of this approach comes from the fact that they can
alter calculated statistics, increase prediction error, turn more complex a model based
on these data or possibly they introduce a bias in the process to which they are dedi-
cated. However we should not eliminate an observation unless, like an expert, we can
determine the incorrectness of the datum. This often is not possible for several reasons:
human-hour cost, time investment, ignorance about the domain we are dealing and even
uncertainty. Nevertheless if we could guarantee that an algorithm successfully will dis-
tinguish errors from rare objects with high confidence level the difficult task would
be solved. Like an human does, an algorithm can confirm or discard a hypothesis by
analyzing several samples of the same object.

Re-measurement is safer than elimination by several reasons: we can conserve rare
objects and decide what to do about them, we can ensure that an anomaly is correct,
we can eliminate the wrong objects from our dataset, we can be sure that a com-
mon instance will never be affected, all of these reasons make suitable the use of re-
measurement instead of elimination in certain domains.

2 Estimation of Stellar Populations Parameters

In most of the scientific disciplines we are facing a massive data overload, astronomy is
not the exception. With the development of new automated telescopes for sky surveys,
terabytes of information are being generated. Recently machine learning researchers
and astronomers have been collaborating towards the goal of automatizing astronomical
analysis tasks. Almost all information about a star can be obtained from its spectrum,
which is a plot of flux against wavelength. An analysis on galactic spectrum can reveal
valuable information about star formation, as well as other physical parameters such as
metal content, mass and shape.

Theoretical studies have shown that a galactic spectrum can be modeled with good
accuracy as a linear combination of three spectra, corresponding to young, medium and
old stellar populations, each with different metallicity and together with a model of the
effects of interstellar dust in these individual spectra. Interstellar dust absorbs energy
preferentially at short wavelengths, near the blue end of the visible spectrum, while its
effects on longer wavelengths, near the red end of the spectrum, are small. This effect is
called reddening in the astronomical literature. Let f()) be the energy flux emitted by
a star or group of stars at wavelength ). The flux detected by a measuring device is then
d(A\) = f(A\)(1 — e~ ™), where 7 is a constant that defines the amount of reddening in
the observed spectrum and depends on the size and density of the dust particles in the
interstellar medium.

We also need to consider the redshift, which tells us how the light emitted by distant
galaxies is shifted to longer wavelengths, when compared to the spectrum of closer
galaxies. This is taken as evidence that the universe is expanding and that it started in
a Big Bang. More distant objects generally exhibit larger redshifts; these more distant
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objects are also seen as they were further back in time, because the light has taken
longer to reach us.

Therefore, a simulated galactic spectrum can be built givency, ¢z, c3, with Y0 ¢; =
1,¢; > 0 the relative contributions of young, medium and old stellar popufa_tions,
respectively; their reddening parameters T1,72,73, and the ages of the populations
aj € {106, 106.3’ 106.6, 107’ 107.3} years, a; € {107.6,108, 108.3108.6} years, a3 €
{109,109} years,

9 = T} ey cis(mi, @i, A)(1 = €7)

with m € {0.0004, 0.004, 0.008, 0.02,0.05} in solar units and my > mg 2> ms,
finally we add an artificial redshift Z by:

A=X(Z+1),0<Z<1

Therefore, the learning task is to estimate the parameters: reddening (ry,72,73),

metallicities (m1, m2, m3), ages (a1, a2, a3), relative contributions (c1,¢2,c¢3), and red-
shift Z, from the spectra.

3 Methods

Kernel methods have demonstrated been useful tools for pattern recognition, dimen-
sionality reduction, denoising, and image processing. In this work we used kernel meth-
ods for dimensionality reduction of spectral data. Also we used a kernel-based method
for novelty detection. Furthermore the re-measurement algorithm differentiates anom-
alies from noise by using a kernel. In this section KPCA and the algorithm for anomaly
detection used are briefly described.

3.1 Kernel PCA

Stellar populations data are formed with instances with dimensionality d = 12134,
therefore, in order to perform experiments in feasible time we need a method for di-
mensionality reduction. Kernel principal component analysis (KPCA) [7] is a relative
recent technique, which takes the classical PCA technique to the feature space, taking
advantage of "kernel functions". This feature space is obtained by a mapping from the
linear input space to a commonly nonlinear feature space F by & : RN — F,z — X.

In order to perform PCA in F, we assume that we are dealing with centered data,
using the covariance matrix in F, C = } E;=1 P(x;)P(x;)T, we need to find A > 0
and v € F\ {0} satisfying \V = CV. After some mathematical manipulation and
defininga M x M matrix K by

K; j = (B(x:), §(x;)) M

the problem reduces to Aa = K a, knowing that there exist coefficients ci(i = 1,..., 1)
such that AV = 1 \i&(x;).
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Depending on the dimensionality of the dataset, matrix K in (1) could be very ex.
pensive to compute, however, a much more efficient way to compute dot products of the
form (®(x), $(y)) is by using kernel representations k(x,y) = ((x) - #(y)), which
allow us to compute the value of the dot product in F without having to carry out the
expensive mapping 9.

Not all dot product functions can be used, only those that satisfy Mercer’s theorem
[8]. In this work we used a polynomial kernel (Eq. 2).

k(x,y) = ((x-y) +1)¢ )

3.2 Kernel Based Novelty Detection

In order to develop an accurate nose-aware algorithm we need first a precise method
for novelty detection. We decided to use a novelty detection algorithm that has out-
performed others in an experimental comparison [9]. This algorithm presented in [10]
computes the center of mass for a dataset in feature space by using a kernel matrix K,
then a threshold ¢ is fixed by considering an estimation error (Eq. 3) of the empirical
center of mass, as well as distances between objects and such center of mass in a dataset.

t=\/-27*(\/§+\/ln—%) ©)

where ¢ = max(diag(K)), and K is the kernel matrix of the dataset with size n x n; é
is a confidence parameter for the detection process. This is an efficient and very precise
method; for this work we used a polynomial kernel function (Eq. 2) of degree 1.

4 Re-Measurement Algorithm

Before introducing the re-measurement algorithm, the concept of the "re-measurement"
process should be clarified. Given a set of instances: X = {z,%2,...,Zn}, With
z; € R™ generated from a known and controlled process by means of measurement
instruments or human recording. We have a subset S C X of instances z§ with S =
{z§,3,...,z5,} and m << n that according to a method for anomaly detection every
zf,i = {1,2,...,m}, is suspect to be a incorrect observation. Then, the re-measuring
process consists of generating another observation a:f' for each of the m objects, in the
same conditions and using the same configuration that when the original observations
were made.

The idea of re-measurement is based on the natural way in which a human clarifies
his doubts; when a person is doubtful about the correctness of a datum he/shee can
check the datum’s validity by analyzing several observations of the same object. For
example, in case our observations were pictures for face recognition, the re-measuring
process would consists of taking another picture for every suspect object in our data set.

The re-measurement algorithm uses a confidence level value (cl) which tell us how
rare a suspect object is. ¢/ can indicates the number of re-measurements to perform for
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Table 1. The R — V1 algorithm

Generate a dataset T which columns are attributes and rows instances
not-outlier-th:=0.99; outlier-th:=0.8;

0. Obtain the principal components (PCr) for T
1. Identify t-suspect observations from PCr

2.Foreachi et

-cli :=In(d; «C)

- measurements; := cl;-new observations of object i

- kavg == & 325 k(i,v5),

- if (kavg 2not-outlier-th and cl = 1): return(not-outlier)
- else if(kavg >outlier-th).return(outlier)

- else return(noise)

3. For each i € t labeled as noise : PCri := measurementsirand

each suspect instance. cl value is obtained from the distance of the suspect objects to
the center of mass in the feature space and it is defined in (4),

I = 1 iflog(d; *C) <0 4)
¢4 = round(log(d; * C)) otherwise (

Where d; is the distance in feature space of the suspect instance z to the center of mass
of the full data set, and C is a scaling constant.

For the anomaly-noise discrimination we decided to use a kernel, since kernels can
be used to calculate similarity between objects [8]. Several kernels were tested but the
kemnel that best distinguished between instances was the extended radial basis function
(5) with o = 0.25. This kernel returns a 1 value if the instances (z, y) are identical or a
value between (0, 1), if they are different, that indicates how similar objects (z,y) are,
near to 1 indicates more similitude.

Mz — 32
k(z,y) = exp — ("x—zyu) )
20
Using this property of the kernel we generated simple rules to differentiate between
noise, anomalies and common instances.

not — outlier if kgyg > 0.99andcl =1
O = { outlier if kayg > 0.8
noise otherwise

where kqyg = le Z;’=1 k(z,y;), is the average of the kemel evaluations given a
suspect instance z and its ¢l new measurements ¥y, ...,y as inputs. In Table 1 the
re-measurement algorithm applied to the prediction of stellar population parameters
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is presented, in step 0 we used KPCA as a preprocessing step. Next we applied the
KB-novelty detection algorithm and with a little modification we forced the algorithm
to return the top t-farther objects with their distance to the center of mass. cl-value is
calculated and c/-new observations are generated and stored in measurements;, then
we calculate kqyg. This Kqvg is compared with our thresholds and the algorithm decide
the type of object, finally the erroneous objects are substituted by a random sample in
measurements;.

4.1 Reducing the Number of Re-Measurements

The proposed algorithm performs well but it requires of nearby 5 new samples to iden-
tify anomalies and above 2 for noisy objects, in some domains (including astronomy)
the generation of a new instances is expensive and obtaining 5 or 4 new measurements
is complicated. A little modification in the algorithm will overcome this difficulty, by a
slightly change in our rules and by verifying them each time that a new measurement is
generated we would need only a new sample to identify common instances and anom-
alies and at most 2 more to detect noise, we will call this algorithm R — V2, the new

rules are:
not — outlier ifd > 0.99and cl =1

O = < outlier ifd>0.8andcl > 2
noise otherwise

In Figure 1 the modification to the algorithm is shown. This time ¢l is used to comple-
ment the basic conditionals. Anomalies and common instances will be detected with
only a new sample by using cl, while noise will be re-sampled a few times to discard
confusions, finally all noise is substituted by a random sample.

5 Experimental Results

In order to test the performance of the re-measurement algorithms some experiments
were performed. The stellar populations domain was used in the following way: in
each experiment a dataset of 200 spectra is generated, 5% of this data is affected with
additive(normal distributed) extreme noise (2.5% with positive mean and 2.5% with a
negative one), another 5% of the data is shifted by a factor (f € R : 1 < f < 10)
simulating useful-anomalies.

We compared accuracy using the mean absolute error (M.A.E.) obtained by a clas-
sifier builded with locally weighted linear regression (LWLR)[11]. LWLR belongs to
the family of instance-based learning algorithms, these algorithms build query specific
local models, which attempt to fit the training examples only in a region around a query
point. For this work we considered a neighborhood of 80 points to approximate the
target function.

In Table 2 percentage reduction error is presented for algorithms R—V'1 and R—V'2,
we reported the average of 5 runs using a 10-fold cross validation.

There is an important reduction of error when we used KPCA, the maximum er-
ror reduction is attained when all of the suspect objects are eliminated, although we
are loosing useful information too. Our algorithms reach accuracy only 2% down the
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For each Instance | In t

Detect t-suspect objects shim loa(dr v C)
Data —— | with the kernelbased | — . ' Kol o
preprocessing novelty il { rowndiely) thermive

detection algorithm
no /\yes

J=<el
) End
Qu:so } l
OUmer) F’._yj = A(i.y, )T

measurement, YCS/L ) ( End )

L V ne N ves
ﬂ = K‘"ah-z ¢ Kl.nah_1 @
&8& &&
; e s 0N

val

yes
| Generate a new

observation of i

Fig. 1. Block diagram of the R — V2 algorithm

Table 2. Reduction percentage of M.A.E. for the prediction of stellar populations parameters
regarding as baseline the M.A.E. obtained when the full-affected dataset was used, compared
with using 10-KPCA, 10-KPCA when all suspect data is eliminated (KPCA-E) and using 10-
KPCA with the re-measurement algorithm (KPCA-R), clean data was used

Method Reddening Metal Ages Contributions Redshift Average
R-V1

KPCA 17.29% 10.17% 13.58%  20.21% -2.39% 11.29%

KPCA-E 20.88% 16.40% 19.19%  33.23% 29.90% 19.76%

KPCA-R 19.82% 14.30% 16.68%  27.14% 13.68% 16.13%
R-V2

KPCA 13.97% 1.57% 14.00%  20.60% -430% 7.56%

KPCA-E 20.85% 7.29% 17.69%  31.85% 29.44% 14.96%

KPCA-R 16.98% 6.69% 15.53%  25.18% 16.24% 12.34%
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Table 3. Reduction percentage of M.A.E. for the prediction of stellar population Parameters,
noisy data was used

Method Reddening Metal Ages Contributions Redshift Average
R-V1

KPCA -1.71% -125% 3.09%  -1.24%  -12.01% -0.47%

KPCA-E 17.00% 541% 6.42% 13.02%  23.23% 7.88%

KPCA-R 224% 3.13% 7.61% 7.76% 529% 541%
R-V2

KPCA  2.66% -0.62% 3.37% 3.07% 7.87% 1.84%

KPCA-E 9.80% 4.00% 10.80% 18.32%  2540% 9.29%

KPCA-R 7.88% 3.57% 8.82%  11.46% 16.48% 7.16%

best performer, without eliminating any anomaly while correcting noisy objects. In real
world domains however, data may be affected with low-level noise due to systematic
errors, therefore, we performed experiments adding low-level noise to the full set of
spectra and affected with extreme noise and anomalies as in the last experiment. In Ta-
ble 3 we report results of this experiment, we observe the same behavior than in Table
2 however the results are diminished even, for the R — V'1 algorithm, the KPCA result
is worse than using the full dataset, it is possible that the number of PC’s used is not the
optimal for these affected data.

Accuracy improvement is significant when we used the re-measurement algorithm,
however if we want to analyze data quality, accuracy may not be the best measure to
compare. In Table 4 performance of the re-measurement algorithms R—V'1and R—V2
is shown.

As we see both algorithms detected and corrected 100% of the noise and none in-
stance was confused. The anomaly detection rate was high although no perfect. There
are not neither false anomalies nor false noisy objects detected. CLC is the ¢l value for
common instances detected as suspicious and its value is obviously 1. CLO is the c!
value for anomalies and it is of almost 5 for the R — V1 algorithm and of 1 for R — V2,
this means that only a new sample was needed for identify anomalies and common
instances while for the case of noisy objects ¢l value (CLN) is of 1.5. This results on
the cl values confirm that the selection of ¢l (4) is adequate. Processing time decreases
about 25% for the R — V2 algorithm in this artificial dataset which yields in saving
some seconds, although for real data the decrement could be of hours.

Last three rows on Table 4 show the performance of the KB-algorithm for novelty
detection. We present the F-measure value obtained by such algorithm. This measure
is based on recall R = ZTT;’T\T) and precision P = (T—PT;PF_PT and it is defined as
F = %%, where TP is for true positives, TN is for true negatives, FP is for false pos-
itives and FN is for false negatives. F—measure express with a real number in [0,1] the
performance of an outlier detection method. We forced the novelty detection algorithm
to return the top 30 points farther the center of mass and this is a reason of because
F—measure value is not perfect, however a look on the TP and FP rates is more useful.

Besides the good performance of the re-measurement algorithms in the astronomi-
cal domain, we had doubts about the performance of our algorithms in other domains.
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Table 4. Performance of the re-measurement algorithms: R — V1 and R — V2

[ Algorithm | [R-V1][ |R-V2]
[ Parameter / Data [Clean|Noisy][Clean] Noisy|
[_Re-Measurement | [ 0 1 ]

Anomalies Detected| 90% [100%|[ 80% [86.6%
Noise Detected |100%[100%|/100%| 100%

Confused 0 0 0 0
False Anomalies | 0.33 [ 1.33 0 0
False Noise 0 0 0 0
CLC-value 1 1 1 1
CLO-value 4.86 | 4.26 1 1
CLN-value 15 [137]] 16 | 1.5
Time(s) 77.57|87.641|55.34(57.32
[ Novelty Detection | | Il | |
TP 19.33] 20 19 20
FP 067) 0 1 0

F-measure 0.77 ] 0.8 ]| 0.76 | 0.8

For this reason we performed experiments on ten data sets from the UCI repository[12],
the datasets used are briefly described in Table 5.

In this experiments we used only the R — V2 algorithm since it is the best per-
former on the above experimentation, moreover we performed experiments with noise
only, since it allow us to simulate the re-measurement process. Each data set was nor-
malized to the range [0, 1] and it was affected as with the astronomical domain. Results
on accuracy for these datasets are show in Table 8, while the performance results are
presented in tables 6 and 7.

As we can see the R — V2 algorithm performance on UCI data is similar to the ob-
served in the astronomical data. There is an accuracy improvement in all of the datasets

Table 5. UCI Datasets description

ID Name #Caun = #F:aturu Outp‘“ # Aﬁe“ed

w Wine 178 - 13 3-Discrete 18
G Glass 214-9 Real 21
H Boston Housing 506 — 13 Real 51
A Auto 32-7 Real 3
I Iris 150 -4 3-Discrete 15
M Machine CPU 209 -6 Real 21
L Lymphography 148 - 18 4-Discrete 15
C Breast Cancer 683 -9 2-Discrete 68
B Bio Med 194 -5 2-Discrete 19

Ab Abalone 1000 - 8 Real 100
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Table 6. Performance of the R — V2 algorithm for the UCI datasets. We present: CLC, CLO and
CLN as before, outliers detected (O.D.), noise detected (N.D.), confusions(Conf.), false outliers
(F.0.) and false noise (F.N.)

Dataset W G H A I M L C B Ab
CLN 3.333.66 3.58 3.67 4.29 4.152.92 3.82 4.21 3.88
0.D.(%) 100 100 96.15 100 100 100 100 100 100 100
N.D.(%) 100 100 98.67 100 100 100 100 100 96.67 98
F.O. 0 0 0 0: --0i~ 3v=40::0 2 11

Table 7. Performance of the kernel-based novelty detection algorithm used. We present the num-
ber of suspect observations detected, true positives and false negatives, recall, precision and
F —measure

I M L C B Ab
23 31 22 102 29 150
15 21 15 68 18.66 99
FN 0 0 133 0 0 0 O0 033 1

Rec 1 1 097 | 1 1 098 0.99
Prec 0.76 0.66 0.65 0.6 0.65 0.68 0.68 0.67 0.64 0.66
F 0.8 0.79 0.78 0.750.79 0.81 0.81 0.8 0.78 0.79

Dataset W G H
Suspect 27 32 76
TP 18 21 49.66

A
5
3
0
1

Table 8. Reduction percentage of M.A.E. for each dataset, when suspect data is eliminated(E)
and when we used the R — V2 algorithm, compared with the prediction of LWLR using the full
data. In last 3 rows, novelty detection algorithm performance is presented

Dataset W G H A I M L C B Ab
Red %

E 0.54 15.76 15.77 24.61 5.23 13.89 6.29 1.83 0.85 5.86

R—-V210.86 14.74 34,54 2837 4 28.62 5.63 1.75 2.24 5.08
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when we used R — V2 even in some results our algorithm improved the elimination of
suspect data. The algorithm needed only a new sample to identify outliers and common
instances and nearby 4 to detect noise. There are not confusions and the false outliers
rate was low, although we had false outliers only in two datasets. Performance of the
kemel-based algorithm for novelty detection again is almost perfect.

6 Conclusions

We have introduced the re-measurement process as an option for useful-anomaly and
noise differentiation. Two kernel based algorithms were presented, R — V2 needs only a
new sample to identify anomalies and at most two for noisy objects. Anomalies remain
unaffected while noise is substituted in an almost automated process (an user may be
needed to generate the new measurements). Our algorithms are model data independent
and can be generalized for non real valued domains, since they are based on kernels.

Experimental results on an astrophysics domain as well as on benchmark data are
presented, our algorithm combined with KPCA improves prediction accuracy and data
quality for the astronomical domain, while for the UCI data the same pattern is observed
showing the generalization ability of our algorithm. This algorithm could be useful
in domains requiring of highly-reliable data or in those in which the novelty is more
interesting than the rest of the objects.
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